- Mumford Criterion

نویسنده

  • A GENERAL HILBERT
چکیده

We provide a Hilbert-Mumford Criterion for actions of reductive groups G on Q-factorial complex varieties. The result allows to construct open subsets admitting a good quotient by G from certain maximal open subsets admitting a good quotient by a maximal torus of G. As an application, we show how to obtain all invariant open subsets with good quotient for a given G-action on a complete Q-factorial toric variety. Let a reductive group G act on a normal complex algebraic variety X. It is a central problem in Geometric Invariant Theory to construct all G-invariant open subsets V ⊂ X admitting a good quotient, i.e. an affine G-invariant morphism V → V / /G onto a complex algebraic space such that locally V / /G is the spectrum of the invariant functions. Let us call these V ⊂ X for the moment the good G-sets. In principle, it suffices to know all good T-sets U ⊂ X for some fixed maximal torus T ⊂ G, because the good G-sets are precisely the G-invariant good T-sets, see [3]. The construction of " maximal " good T-sets is less hard, and in order to gain good G-sets one studies the following question: Let U ⊂ X be a good T-set. When is the intersection W (U) of all translates g ·U , g ∈ G, a good G-set? The classical Hilbert-Mumford Criterion answers this question in the affirmative for sets of T-semistable points of G-linearized ample line bundles. Moreover, A. Bia lynicki-Birula and J. ´ Swi¸ecicka settled in [2] the case of good T-sets defined by generalized moment functions, and in [3] the case U = X, as mentioned before. For G = SL 2 , several results can be found in [4], [5], and [12]. As indicated, one imposes maximality conditions on the good T-set U , e.g. pro-jectivity or completeness of U/ /T. The most general concept is T-maximality: U is not T-saturated in some properly larger good T-set U ′ , where T-saturated means saturated with respect to the quotient map. For complete X and T-maximal U ⊂ X which are invariant under the normalizer N (T), A. Bia lynicki-Birula conjectures that W (U) is a good G-set [1, Conj. 12.1]. We shall settle the case of (T, 2)-maximal subsets. These are good T-sets U ⊂ X such that U/ /T is embeddable into a toric variety, and U is …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Second Order Local Minimality Criterion for the Triple Junction Singularity of the Mumford-shah Functional

This paper is the first part of an ongoing project aimed at providing a local minimality criterion, based on a second variation approach, for the triple point configurations of the Mumford-Shah functional.

متن کامل

DENSITY LOWER BOUND ESTIMATES FOR LOCAL MINIMIZERS OF THE 2d MUMFORD-SHAH ENERGY

We prove, using direct variational arguments, an explicit energy-treshold criterion for regular points of 2-dimensional Mumford-Shah energy minimizers. From this we infer an explicit constant for the density lower bound of De Giorgi, Carriero and Leaci.

متن کامل

The calibration method for the Mumford-Shah functional and free-discontinuity problems

In this paper we present a minimality criterion for the MumfordShah functional, and more generally for non convex variational integrals on SBV which couple a surface and a bulk term. This method provides short and easy proofs for several minimality results.

متن کامل

A Study of the Hilbert-mumford Criterion for the Stability of Projective Varieties

We make a systematic study of the Hilbert-Mumford criterion for different notions of stability for polarised algebraic varieties (X,L); in particular for Kand Chow stability. For each type of stability this leads to a concept of slope μ for varieties and their subschemes; if (X,L) is semistable then μ(Z) ≤ μ(X) for all Z ⊂ X. We give examples such as curves, canonical models and CalabiYaus. We ...

متن کامل

, Castelnuovo - Mumford Regularity , and Generic Initial Ideals

KOSZUL ALGEBRAS, CASTELNUOVO-MUMFORD REGULARITY, AND GENERIC INITIAL IDEALS Giulio Caviglia The University of Kansas Advisor: Craig Huneke August, 2004 The central topics of this dissertation are: Koszul Algebras, bounds for the Castelnuovo Mumford regularity, and methods involving the use of generic changes of coordinates and generic hyperplane restrictions. We give an introduction to Koszul a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002